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Abstract— We introduce our work on pouring as an example
of complicated tasks for robots. The architecture is a skill
library with planning and learning methods. We briefly describe
our representation for pouring, then discuss problems and
future directions.

I. INTRODUCTION

The research focus of the planning and learning commu-
nity is shifting to more complicated tasks such as humans
daily activity rather than planning trajectories. Examples are
manipulation of non-rigid objects like folding towels [2],
and baking cookies [3]. A challenge is to find a good
way to model (represent) such behaviors. We think planning
methods are necessary to adjust behavior models to current
situations, and learning methods are necessary to adapt
behavior models to unknown situations.

We are exploring these issues with a pouring task [1] in
a learning from demonstration framework. The pouring task
involves grasping as well as flow control, and considers a
range of container shapes, types of materials, and initial
positions. Thus designing a behavior covering these varia-
tions is very difficult. Our pouring behavior achieved a good
generalization ability compared to those of other pouring
approaches by carefully combining several technologies used
in the robotics field, such as state machines, planning, and
learning methods.

In this presentation, based on the pouring research [1] we
discuss the essence of the representation, and future research
directions. From human demonstrations, we found that there
are many skills for pouring, especially flow control. Tipping
is an example; shaking a container is useful to pour tomato
sauce or ketchup, squeezing works well for shampoo bottles,
and tapping a bottle of coffee powder is useful to pour
it carefully. So our hypothesis is that humans have these
skills in a library, and plan or learn how to use them. This
hypothesis was empirically explored by making a pouring
model with a skill library together with planning and learning
methods, which achieved good generalization.

However, human developers did a lot of work in our
pouring research. In order to automate the developers’ work,
we need to upgrade the planning and learning methods.

In the rest of this paper, we briefly introduce our pouring
model, and then the issues are described. We discuss the
future research directions and related research.
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II. POURING MODEL

The video of a PR2 robot pouring is a good introduction
of [1]: https://voutu.be/GiwfbOur3CO

Phases of pouring include a preparation process (grasping
a source container and moving the container to the receiving
container’s position), controlling the material flow, and a
post pouring process (putting the source container at a final
position). The most difficult thing to model is flow control,
since it is a manipulation of complex materials, such as liquid
and granular materials.

We consider a behavior model consisting of a library of
skills, and planning and learning methods. Although our
goal is automating the entire architecture, we model the
skills manually. The skills are modeled with a well-known
representation, finite state machines. Finite state machines
represent both a behavioral structure (grasping, moving con-
tainer, etc.) and feedback control (e.g. tipping until a target
amount is achieved). A general flow controller is modeled as
a hierarchical state machine using these skills. Each skill may
have some parameters for selection and adjustment. Planning
methods are introduced to obtain some situation specific pa-
rameters such as grasp parameters, pouring locations (where
to put the mouth of the source container), and so on. Learning
from practice methods are introduced for skill selection, for
parameter adjustment, and for improving plan quality.

An important idea is the decomposition of pouring be-
havior. The entire pouring behavior is decomposed into
several sub-skills and modeled by state machines, such as
grasping and moving a container. Such a decomposition is
possible because the sequence of sub skills is usually the
same (moving an arm — grasping a container — moving the
container — flow control — ...). This decomposition is also
compatible with a memory-based approach to flow control,
since the memorized skills are considered as decomposed
skills.

Similarly, rather than planning many steps of the pouring
behavior at once, we separate it into several small planning
problems, such as grasping, pouring location, and path gen-
eration. The benefit is that we can reduce the computational
cost of planning.

We consider two types of learning methods: (1) direct
policy learning for selection (e.g. flow-control skill selection)
and for adjustment (e.g. shaking angle), and (2) learning to
improve planning where we update the evaluation function
used in planning, rather than a policy.

Unifying these elements, we can achieve a pouring behav-
ior model with wide generalization in terms of the variations
mentioned before. Since some combinations of material
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types and container shapes require different flow control
skills, state machines representing skills and skill selection
learning are essential. Learning methods may also improve
performance. Planning methods are necessary since container
shape affects the grasp parameters, hand path, etc. The vari-
ation of initial poses is mainly handled by planning methods,
but a state machine may increase the success rate in different
initial poses; for example, the gripper position is improved by
visual feedback control represented with a state machine. The
difference of target amounts is handled by state machines
for feedback control of the target amount observation. The
learning method to improve planning improves plan quality.
We implemented the pouring behavior model on a PR2
robot and conducted experiments. We verified the general-
ization ability of the model in terms of materials, container
shapes, contexts, container locations, and target amounts.

III. DISCUSSION

Through the pouring research, we found that the essential
components were a skill library, and planning and learning
methods. Since our pouring behavior depends a lot on human
engineering, our next challenge is to increase the autonomy.
In this section we discuss the learning and planning methods
in pouring by comparing with other research in order to
consider the future directions.

We decomposed the entire pouring task into several plan-
ning problems, and introduced learning methods to improve
performance. Since each planning problem is a maximization
of an evaluation function with respect to action parameters,
and a learning method updates the evaluation function from
actual samples, we can consider that this method is a kind
of temporal difference learning. Namely we are solving a
reinforcement learning (RL) problem.

The issues of our method are that: (1) learning methods to
update evaluation functions are slow, and (2) a lot of human
engineering is necessary to design good evaluation functions.
These issues would be also problematic when learning new
skills. We consider that these issues are due to reinforcement
learning with learning value functions.

There are two approaches to plan behaviors under totally
or partially unknown dynamics: a model-free approach and
a model-based approach. Another issue is whether value
functions are learned. In a model-based approach, we learn
a dynamics of the system, then we apply dynamic pro-
gramming, such as differential dynamic programming (DDP;
[4]). Examples are [5], [6]. In model-free approaches, we
do not learn dynamics models, but learn policies. There are
two types: learning value functions (typically Q(z,a)) then
applying local planning (max, Q(x,a)), e.g. [7], [8]. The
other is updating policy parameters directly, e.g. [9], [10].

Learning dynamics is typically easier than RL, since this
is a supervised learning problem. However it needs many
samples to cover the entire state-action space, and DDP often
converges to poor local maxima. Model-free methods tend
to acquire better policies. Direct policy learning methods
converge faster than value function based methods. However
their issue is less generalization ability compared to that of

model-based methods. Recent research is trying to break
the weak points. Kober et al. [11] introduced a meta-
parameter learning architecture to their direct policy learning
method [9] in order to increase the generalization ability.
Levine et al. [12] proposed a practical approach where a
trajectory optimization method for unknown dynamics is
combined with a local linear model learned from samples.
They trained neural network polices to increase generaliza-
tion.

Although those approaches are based on direct policy
learning, we think approaching from learning dynamics is
also valuable due to its generalization ability. Actually in
our pouring behavior, planning methods are playing a very
important roll in supporting generalization. For a smooth
connection of those planning methods and learning methods,
a learning-dynamics approach makes a lot of sense. Through
our pouring research we noticed that although the entire
dynamics is complicated, it can be decomposed into a
sequence of dynamical models, for example the relationship
between the mouth position of the source container and the
flow trajectory. We are currently taking this approach and
our work will be published soon.
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